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OOvveerrvviieeww
Advanced data reconstruction methods are used to extract more information from spectra than 
traditional methods but they have relied on the average data noise level to determine the convergence 
point, even for spectra with a strongly varying noise level. This work shows the benefits of correctly 
accounting for any noise variation. 
 
A. Superior, evenly filtered results are obtained from advanced non-linear filters. 
 

B. The ability of deconvolutions to detect features in the data is not compromised by an inappropriate 
noise level. 
 

C. The amount of intensity recovered for very weak features is substantially improved. 
 

D. Superior deconvolutions and quantified error bars are obtained through correctly fitting the data 
regardless of the noise level. 
 
AA.. FFiilltteerriinngg NNooiissee
IInnttrroodduuccttiioonn
Linear filters – e.g. Savitsky-Golay, Fourier smoothing and triangular averaging – have a uniform effect 
regardless of the S/N because they are designed to remove high frequencies at the expense of 
broadening signals. However, non-linear filters – e.g. Enchant™ - are able to filter noise with only 
minimal peak broadening. 
 
Until recently, the Enchant™ program has used the average data noise level but this is inadequate 
when the noise level changes markedly across the spectrum. In these cases, noise that is well above 
the average value is treated as signal and is not filtered. Conversely, weak signals with a low noise are 
treated as noise and become broadened. 
 
Regardless of any applied instrument or user filter, Enchant™ computes the noise throughout the data 
before going through its iteration cycle. By accounting for the underlying noise level, noise is uniformly 
filtered without broadening signals, irrespective of their S/N. 
 
EExxppeerriimmeennttaall
The data are the MALDI spectrum of a 22 kDa polymer. The signals of interest are on a falling baseline 
and the noise at low m/z is more intense than the signals. This is clear in Figure 1. The top trace shows 
the raw data and the lower trace is the baseline corrected result using an advanced baseline correction 
algorithm. 
 
The baseline corrected data were first filtered using the Enchant™ algorithm but using an average noise 
level. The computation was then repeated but taking into account the varying S/N across the spectrum. 
Finally, the baseline corrected data were deconvolved using the ReSpect™ algorithm using both the 
average and variable noise levels so as to determine their effect on the distribution of noise features in 
the deconvolved result. 
 



Figure 1 Top: Data, Bottom: Baseline corrected 

RReessuullttss && DDiissccuussssiioonn
The top trace of Figure 2a shows a small region of noise at low m/z. The centre and lower traces show 
the Enchant™ results using an average and variable noise. Because the noise in this region is greater 
than the average for the whole spectrum, it is treated as signal and only minimal filtering occurs. By 
accounting for the actual S/N variation, the filtering is much more effective. In Figure 2b, the top trace 
shows a small region of noise at high m/z. The noise is lower than the average and filtering is too 
extreme using the average noise. By accounting for a varying S/N the filter is less severe and the noise 
characteristics now match those at low m/z. 
 

Top: 2a: Left - noise for high baseline. 2b: Right - noise for low baseline. 
Centre: Effect of non-linear filter using average noise level. 
Bottom: Effect of non-linear filter using variable noise level. 

 

Note: Of necessity, the vertical scale between these two figures is relative. 



Figure 3 compares the effect of average and variable noise levels for the signals. The noise across the 
peaks shown is greater than the average value so that intense noise features on the side of, or near the 
top of peaks are treated as signal. However, by accounting for the varying S/N, almost all these features 
are correctly filtered without peak broadening (bottom trace). 
 

Figure 3 Top: Data Centre: Average noise filtering Bottom: Variable noise filtering 

CCoonncclluussiioonnss
The results obtained by applying non-linear filters that are designed to reduce noise without broadening 
signals are dramatically improved by taking into account any variation in the data noise level. 
 
BB.. NNooiissee DDiissttrriibbuuttiioonn
IInnttrroodduuccttiioonn
Probabilistic deconvolution programs are iterative and an important convergence parameter is the data 
noise level. Like other algorithms, the ReSpect™ deconvolution algorithm has, until recently, used the 
average noise level. However, mass spectra frequently have a substantially varying noise level. 
Therefore, where the noise level is higher than the average value, features that are consistent with the 
model will be reported as signal. Conversely, noise features that are much weaker than the average 
noise level will be severely suppressed because they are treated as noise. Such features will have a 
reduced intensity or may go undetected. Therefore, there will be a very unrealistic distribution of found 
noise features across the spectrum. 
 
By taking into account the varying noise level, only those significant noise features with respect to the 
local noise level are detected and reported. 
 
EExxppeerriimmeennttaall
The baseline corrected data for the 22 kDa polymer shown in Figure 1 was first deconvolved using the 
average noise level. In a second computation the varying noise level was used. 



Because the m/z increment is not uniform, the number of detected noise features was counted for each 
5000 data points in regions where genuine signals were absent. 
 
RReessuullttss && DDiissccuussssiioonn
Table 1 shows the number of significant noise features (the low frequency noise components that fit the 
model) detected in each block of 5000 data points. The region m/z 16744-34124 was omitted since this 
contained genuine polymer signals. 
 
When the average noise level is used, many more significant noise features are detected where the 
noise is high compared with where it is low. Indeed, at high m/z no signals are detected because the 
average noise value is much greater than the noise in this region. Using a variable noise level for the 
deconvolution, the distribution of detected features is, as expected, much more uniform. 
 
It is important to note that the less than expected number of features using variable noise in the region 
m/z 34124-40000 arises from the fact that the data were "clipped". Therefore, this region contains 
numerous tiny pockets of several successive zero intensity values which reduces the number of features 
that may be detected. 
 
CCoonncclluussiioonnss
By taking into account any varying noise level within the deconvolution calculation, all significant 
features are detected according to their S/N, regardless of their absolute intensity. Noise features are 
therefore evenly, rather than unevenly distributed. 
 

Table 1: Distribution of Detected Noise Features 
 

m/z Average Noise Variable Noise
5000 -   7936 63   44 
7936 - 10872 55   39 

10872 - 13808 48   41 
13808 - 16744 43   40 
34124 - 37061 4 22 
37061 - 40000 0 19 

Totals 213 205 

CC.. RReeccoovveerriinngg PPeeaakk IInntteennssiittiieess
IInnttrroodduuccttiioonn
All properly designed reconstruction methods fit their results to within the noise level. Therefore, as the 
S/N of a peak is reduced, a point is reached where it becomes indistinguishable from the noise and is 
assigned zero intensity. Consequently, intensity errors will only be small when peaks have a reasonable 
area with respect to the noise standard deviation. 
 
If the noise level changes significantly across the data, it is possible that the intensities of weak peaks in 
regions of low noise will be underestimated. Therefore, it is important that the deconvolution should take 
into account any variation in the noise level throughout the data in order to recover the peak intensities 
correctly. 



EExxppeerriimmeennttaall
Figure 4 shows the baseline corrected MALDI spectrum of poly methylmethacrylate with a nominal 
molecular weight of 3000 Da. The zoomed regions (Figures 5 & 6) clearly show the presence of minor 
components. There are therefore numerous signals, a high dynamic range and a noise level that 
changes substantially across the spectrum. These data are therefore ideally suited to explore the effect 
of taking the noise into account when deconvolving the data to obtain peak intensities. An estimate of 
the true peak intensities was obtained by filtering the noise with a linear filter designed to reduce noise 
without broadening signals and then followed by curve fitting. The estimates are subject to some error 
where peaks overlap other peaks or overlap noise peaks. The data were then deconvolved with the 
ReSpect™ algorithm using the computed average noise level. The deconvolution was repeated taking 
into account the underlying, varying noise level. 
 

Figure 4 Baseline corrected data 

RReessuullttss && DDiissccuussssiioonn
The table accompanying Figure 5 shows how much of the intensity for each peak was recovered by 
using the average noise level and by taking the underlying noise level into account. There is little 
difference in the results but more intensity is recovered for weak peaks by correctly accounting for the 
noise. The effect increases as the peak S/N falls, as shown in the table accompanying Figure 6.

Figures 7 & 8 show how the recovered peak intensity is correlated with the estimates of the true peak 
intensities. Figure 9 compares the results for using an average and a varying noise level. It is clear that 
much more of the true peak intensity is recovered for weak peaks when any noise variation is taken into 
account. As expected, the recovered intensity markedly accelerates towards zero as the assumed noise 
level is approached. This effect is dramatically reduced when the noise variation is taken into account. 
 





Figure 7 Recovered intensity profile using average noise level 

Figure 8 Recovered intensity profile using variable noise 

Figure 9 Red: Average noise recovered intensity; Green: Variable noise recovered intensity 



CCoonncclluussiioonnss
For data where the noise level changes across the spectrum, much more of the true intensity of weak 
peaks is recovered when any variation in the underlying noise level is correctly taken into account. 
 
DD.. IImmpprroovveedd DDeeccoonnvvoolluuttiioonnss && SSiiggnniiffiiccaannccee LLeevveellss
IInnttrroodduuccttiioonn
What applies to noise (Section B) applies to signals. If an average noise level is used for deconvolving 
data where the noise level varies, it follows that where the noise is higher than average, signals will be 
over-fitted and where it is lower they will be under-fitted. Also, weak signals with a noise level below 
average will have less significance. The deconvolution is less efficient and severely overlapped peaks 
are resolved less. By accounting for noise variations the deconvolution efficiency is the same throughout 
the spectrum. The ability to resolve overlapping peaks is not compromised and weak peaks with low 
noise are efficiently resolved. The computed m/z and intensity errors are consequently more reliable. 
 
EExxppeerriimmeennttaall
The top trace of Figure 10 shows typical MALDI-TOF DNA sequencing data. The noise level changes 
substantially across the data. Although peak overlap becomes severe at high m/z, the peak width in data 
points is relatively constant and these data are well suited to explore the efficiency of deconvolutions 
when the noise varies across the spectrum. The baseline corrected data shown in the lower trace of 
Figure 10 were first deconvolved using the average data noise level and the program default values for 
convergence. The deconvolution was then repeated but taking into account the changing noise level. 
 



RReessuullttss && DDiissccuussssiioonn
The top trace of Figure 11a shows some weak peaks where the noise is high along with the 
deconvolved results using average and variable noise. Because the deconvolution is not compromised 
by the average noise estimate being too high, there is little difference in the results. Figure 11b shows 
weak overlapped peaks at high m/z where the noise is low. Here, the average noise level is too high and 
the resolution of overlapped peaks is inferior compared with using variable noise. 
 

Table 2 shows the found m/z values and their errors to be virtually identical where the noise is higher 
than the average since moderately over-fitting the data will have little effect compared with its correct 
fitting. Conversely, where the noise is lower than the average, the data are under-fitted, resulting in 
higher error estimates. The same is true for the intensities and, proportionally, the errors are lower 
where the noise is low and more of the intensity is recovered using variable noise because the data are 
fitted correctly. Slightly more intensity is recovered where the noise is high due to over-fitting. 
 
For this particular sample, the sequence contains three sites of degeneracy where the DNA synthesis 
products varied at three particular sites. One site has a G/T split, the second another G/T and the third a 
C/T split. The higher mass peaks are therefore clusters of 6 peaks corresponding to variations that 
contain combinations of C, T and G. Since the mass difference between T & G is 25.01 and C & T is 
15.01, it is possible to predict the mass differences between the adjacent theoretical peaks in the 
clusters. 



Table 2: Comparison of Quantified Errors 
 

Average Noise Level Variable Noise Level 
m/z Err Int Err Int/Err m/z Err Int Err Int/Err

1759.6 0.3 3700 171 21.7 1759.6 0.3 3628 169 21.4 
1784.2 0.3 3570 171 20.9 1784.2 0.3 3491 171 20.4 
1799.3 0.5 2750 217 12.6 1799.2 0.5 2660 211 12.6 
1819.2 0.3 3414 153 22.3 1819.2 0.3 3344 153 21.8 
13527.1 0.8 2277 62 37.0 13527.1 0.7 2276 49 46.0 
13547.3 0.5 1502 63 23.8 13547.1 0.5 1506 54 27.8 
13561.1 1.4 966 67 14.5 13560.8 1.2 1013 55 18.6 
13577.3 1.2 1471 79 18.7 13576.9 0.5 1400 59 23.7 
13590.0 2.2 542 78 7.0 13589.5 1.8 661 69 9.6 
13608.5 0.8 892 66 13.5 13608.5 0.7 898 54 16.6 

Note: The intensity divided by the error provides an estimate of the significance of the peak. 

The deconvolution does not separate all peaks in the high mass clusters when the average noise is 
used. However, the superior deconvolution obtained using a variable noise level resolves all peaks so 
that a full analysis is obtained. The variable noise deconvolution results are summarised in Table 3.

Table 3: Comparison of Mass Differences 
 

Theory Cluster 1 Error Cluster 2 Error
0.00 - - - - 

15.01 15.51 1.96 15.26 1.97
25.01 23.06 1.64 23.80 1.72
40.02 39.26 1.58 39.78 1.71
50.02 50.00 1.73 49.97 1.51
65.04 64.46 1.57 62.28 1.80

Note: Cluster 1 is centred around m/z 13450 and Cluster 2 is centred around m/z 13780. 
Differences are measured from the first peak of each cluster. 

 
CCoonncclluussiioonnss
The quality of the deconvolved results and the corresponding quantified masses and intensities are 
compromised by using the average data noise level, particularly in regions where the noise is lower than 
the average value. By correctly taking into account any variation in the noise across the spectrum, 
superior deconvolutions are obtained and peak overlaps are more readily resolved. This improved fitting 
to the data also provides robust quantified errors and absolute intensities that are correctly fitted within 
the noise throughout the data. Moreover, in the example presented here, the improved deconvolution 
allows a full analysis that could not be achieved when the average noise level was used. 
 
Enchant™ and ReSpect™ are trademarks of Positive Probability Limited (PPL).
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